
hist 698 § george mason university § fall 2014

Clio 3: Programming for Historians
Meets in TBD on Wednesday, 7:20–10:00 p.m.

Lincoln Mullen
E-mail: lincoln@lincolnmullen.com
Website: http://lincolnmullen.com
Office: TBD
Office hours: TBD and by appointment

DRAFT SYLLABUS

Course description
This class will teach you how to use computer programming for research
in history. This class is not organized around the features of a particular
programming language or the theoretical concepts of programming, as a class
in a computer science department might be. Rather it is organized around
three of the common practices (and four of the common programming
languages) that digital historians use to do their work.

We will begin by learning the principles of the Unix operating system
which undergirds almost all research programming. Our first major section
will be on data analysis, in which you will use the R language to analyze
historical data both quantitatively and geographically. You will also learn
how researchers structure, manipulate, and clean their data. At the end of
this section you will translate one of your visualizations into an interactive,
online version using Javascript, the lingua franca for interacting with users
over the web. Our next major section will be on scripting for research, using
the elegant and expressive language Ruby. We will begin by using Ruby to
access APIs and scrape web documents for research. Then we will use Ruby
to create our own simple web applications and to interact with relational
databases. Finally we will move on from Ruby to PHP, a commonly used
language for web applications like Omeka and WordPress. We will use

Revision c23c94b on 2014/03/14

mailto:lincoln@lincolnmullen.com
http://lincolnmullen.com


2

Omeka as our example of a large-scale digital humanities tool. You will learn
how Omeka plugins work and make your own plugin as your final project.

This course emphasizes breadth for three reasons. First, digital humanists
tend to be polyglot when it comes to tools and programming languages.
Second, often the best way to gain a deeper understanding of one language is
to learn a second language. By comparing multiple languages you will gain a
knowledge of the basic structures of computer programming. Third, picking
up several languages will teach you how to learn a computer language. In
my experience, once you’ve learned three or four programming languages it
becomes much easier to pick up the next language.

Since this is a research class, students are expected to come to the course



3

with an active research agenda and to know of or soon find a body of primary
sources susceptible to computational methods. As much as possible, you
should try to use the assignments in this course to advance your research,
especially for your dissertation. You should expect to come out of this
course a better-equipped historian. While this course alone will likely not
be sufficient to turn you into a digital humanities software developer (for
that you’ll need a deep immersion in a particular language or two) you will
gain a familiarity with the basics of computer programming as applied for
humanities research. Using this base, you can go on to become more fluent
as a digital humanities developer should you wish.

This course does not presume any prior experience with computer pro-
gramming. However the course does assume that you have taken Clio 1 and
Clio 2, and thus possess the skills taught in those courses. Make no mistake,
this is an advanced digital history course and you will likely find the material
very difficult, even alien at first. Nevertheless, I will make the commitment
to get or give you all the help that you need, and (contrary to a common
discourse about computer programming) there is no intrinsic reason why
you should not do well in this course.

Learning goals

After taking this course, you will

• be familiar with R, Javascript, Ruby, and PHP, along with some of their
most useful libraries, such as ggplot2, dplyr, jQuery, D3, Sinatra, and
Nokogiri;



4

• understand the common concepts of computer programming across
computer languages;

• be able to read documentation and navigate online aids such as Stack
Overflow in order to learn programming languages for yourself;

• perform reproducible data analysis both quantitatively and geographi-
cally;

• programmatically access APIs and data for your research;
• understand the basics of how web applications are built; and
• contribute code back to digital humanities projects.

Assignments

Participation. Your most basic assignment is to come to class prepared. Each
week you will have to read online tutorials or documentation about the
programming technique we will be learning. When the syllabus says to
“read” an assignment, that means to read the tutorial or documentation with
a text editor and terminal open, doing your best to get the code to work.
You are not expected to come to class having mastered the topic, but you
are expected to come having tried your hand at it. No later than four hours
before class, you should e-mail the course list about one thing you think
you learned and one thing you didn’t understand. I will use your e-mails to
tailor my explanations in class. Often in class, I will ask you to work your
way through some programming problem on your computer and submit
your solutions to GitHub, though these solutions will not be formally graded.
All of these kinds of participation will factor into your course participation
grade.

Tutorial. You will write one programming tutorial that meets the sub-
mission guidelines for The Programming Historian 2. This tutorial should
explain how to perform some research technique in history, using any of the
languages or technologies that we will learn. You should post this tutorial to
your own blog. After revision you may wish to submit it to the Programming
Historian 2 to go through its peer-review process. This assignment will be
due by the end of the semester, though you can and probably should submit
it earlier.

Lab notebook. At the end of our data analysis section you will submit a lab
notebook in R that performs some kind of analysis of use to your historical
research. This notebook should perform an exploratory data analysis, mining
everything of possible interest from your data. For example, you should
try mapping, visual analysis, charts, and summary statistics. This notebook

http://programminghistorian.org/


5

should also contain prose about the historical insights that you have learned.
Web visualization. You will create an online visualization in Javascript

and D3 of some of the fundamental insights gained in the lab notebook
section. This visualization will take the form of a website with interactivity
and written analysis to go along with the visualization.

API script. You will submit code in Ruby which uses a web API to gather
sources into usable data.

Omeka plugin. You will spend the second half of the semester creating
a plugin for Omeka. This plugin’s README should contain a brief essay
explaining the scholarly purpose for the code. (At your option, you may
substitute a comparably advanced program in any language for any purpose
that would be more useful for your work. For example, you could create
a web application or a WordPress plugin, or write Ruby gem, or create a
more advanced web visualization. Please make arrangements with me well
in advance.)

Evaluation

The assignments for this course will receive these weights.

assignment weight

class participation/coding 40%

tutorial 10%

lab notebook in R 10%

web visualization in Javascript 10%



6

assignment weight

API script in Ruby 10%

Omeka plugin in PHP 20%

A few notes
This course assumes that you are programming in a Unix-like environment,
namely some Linux distribution or the Unix underpinnings of Mac OS X.
You’re free to use Windows if you like, but I won’t support you in figuring
out the differences, and your code will have to run on my machine.

Configuration is the bane of all computer projects, and to that end all
code must run on a standard machine. This machine image will be available
to you using Vagrant, and you’ll be able to run it as a virtual machine on
your own computer. You should test all code in the virtual machine before
submitting it.

To submit your code, you will need a GitHub account, and must let me
know your user name. (Your account can be anonymous/pseudonymous to
the world, if you wish, just not to the people in this course.) Each assignment
for the course should have its own repository, and each repository should
have a tag, submitted, for the version of the assignment you wish me to
grade.

This course will not teach you the tips and tricks of the innumerable
tools that surround programming, such as IDEs (Integrated Development
Environments), text editors, syntax checkers, environment managers and so
on, though I can provide suggestions if you need them. Use whatever you
want. If you don’t have a preferred text editor, you could do worse than
Sublime Text or TextWrangler. I prefer Vim.

http://www.vagrantup.com/
https://github.com/
http://www.sublimetext.com/
http://www.barebones.com/products/textwrangler/
http://www.vim.org/


7

The culture around programming can be extraordinarily generous, with
many people sharing their work and expertise for free. It can also be ex-
traordinarily toxic, especially for women and minorities. Part of this course
will be learning to help yourself in the culture of programming, including
indispensable sites such as Stack Overflow. If you get stuck in the more
nefarious parts of the culture, come ask for help.

In any case, come talk with me early and often!

http://stackoverflow.com/


Course Schedule

Week 1 Unix

Read Mike Gancarz, Linux and the Unix Philosophy.

Read Jerry D. Peek, Learning the Unix Operating System, chs. 1, 3–5.

Experiment with your terminal, Bash, and Unix conventions.

Week 2 Git and GitHub

Try GitHub’s online, interactive tutorial for Git. (This is probably the
most fun way to learn the basics of Git.)

Read the documentation for GitHub and their tutorials

Use Scott Chacon, Pro Git, especially chs. 1–3, 5, for reference.

Read William J. Turkel and Adam Crymble, “What to Do If You Get
Stuck,” The Programming Historian 2.

Experiment with Git and GitHub.

Week 3 Data visualization in R

Watch Google Developers’ introduction to R.

Read Winston Chang, R Graphics Cookbook, appendix A, chs. 1-4.

Browse ggplot2 documentation.

Experiment with ggplot2 in R Studio.

Week 4 Mapping in R

Read James Cheshire, “Introduction to Spatial Data and ggplot2,” Spa-
tial.ly, December 9, 2013.

Read David Kahle and Hadley Wickham, “ggmap: Spatial Visualization
with ggplot2,” The R Journal 5, no. 1 (June 2013): 144–61.

1

http://try.github.io/
https://help.github.com/
http://guides.github.com/
http://git-scm.com/book
http://programminghistorian.org/lessons/troubleshooting
http://programminghistorian.org/lessons/troubleshooting
http://www.youtube.com/watch?v=iffR3fWv4xw&list=PLOU2XLYxmsIK9qQfztXeybpHvru-TrqAP
http://docs.ggplot2.org/current/
http://spatial.ly/2013/12/introduction-spatial-data-ggplot2/
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf
http://journal.r-project.org/archive/2013-1/kahle-wickham.pdf


2

Browse documentation for RGDAL.

Experiment with spatial data and shapefiles with ggplot2/ggmap.

Week 5 Data cleaning and tidying in R

Read Hadley Wickham, “Tidy Data,” Journal of Statistical Software (forth-
coming).

Read Hadley Wickham, “Reshaping Data in R,” Statistical Computing
and Graphics 16, no. 2 (December 2005): 5–8.

Read Hadley Wickham, “The Split-Combine-Apply Strategy for Data
Analysis,” Journal of Statistical Software 40, no. 1 (April 2011): 1–29.

Watch Hadley Wickham, “Tidy Data and Tidy Tools,” NYC Open
Statistical Computing Meetup, December 2011.

Read Seth van Hooland, Ruben Verborgh, and Max De Wilde, “Cleaning
Data with OpenRefine,” The Programming Historian 2.

Browse documentation for reshape2, dplyr, plyr.

Experiment with reshaping, tidying, and cleaning your own data.

Week 6 Javascript for web interaction

Read Douglass Crockford, Javascript: The Good Parts.

Browse the beginning tutorials at jQuery Learning Center.

Experiment with jQuery in your browser.

Due: Lab notebook in R.

Week 7 Interactive web visualizations using D3

Read Scott Murray, Interactive Data Visualization for the Web.

Browse the D3 documentation.

Experiment with the D3 examples here and here.

Week 8 Object oriented programming in Ruby

Read David A. Black, The Well-Grounded Rubyist, chs. 1–4.

Due: Web visualization in Javascript.

Week 9 Flow control and data structures in Ruby

Read David A. Black, The Well-Grounded Rubyist, chs. 6–10.

http://cran.r-project.org/web/packages/rgdal/index.html
http://vita.had.co.nz/papers/tidy-data.pdf
http://stat-computing.org/newsletter/issues/scgn-16-2.pdf
http://www.jstatsoft.org/v40/i01/
http://www.jstatsoft.org/v40/i01/
http://vimeo.com/33727555
http://programminghistorian.org/lessons/cleaning-data-with-openrefine
http://programminghistorian.org/lessons/cleaning-data-with-openrefine
http://cran.r-project.org/web/packages/reshape2/index.html
https://github.com/hadley/dplyr
http://cran.r-project.org/web/packages/plyr/index.html
http://learn.jquery.com/
http://chimera.labs.oreilly.com/books/1230000000345
https://github.com/mbostock/d3/wiki
https://github.com/mbostock/d3/wiki/Gallery
http://bl.ocks.org/mbostock


3

Week 10 Using APIs in Ruby

Read David A. Black, The Well-Grounded Rubyist, ch. 11.

Read Jason Heppler, “Better Web Scraping with Nokogiri,” October
12, 2012. You may find Jeri Wieringa, “Intro to Beautiful Soup,” The
Programming Historian 2, helpful on the same research technique using
the equivalent library for Python.

Read Adam Crymble, “Downloading Multiple Records Using Query
Strings”; Ian Milligan, “Automated Downloading with Wget”; and
Kellen Kurschinski, “Applied Archival Downloading with Wget,” all
in The Programming Historian 2.

Browse documentation for Nokogiri, JSON module, REST wrapper.

Experiment with Ruby and an API for historical sources.

Week 11 Basic web applications using Sinatra in Ruby

Read Alan Harris and Konstantin Haase, Sinatra: Up and Running; you
may also find Sinatra: The Book helpful.

Browse Sinatra documentation.

Experiment with creating a mini web application using Sinatra.

Due: API script in Ruby.

Week 12 Databases and SQL

Read Sam’s Teach Yourself SQL, lessons 1–6, 9–10, 12–13.

Read “Singing with Sinatra” parts 1–3.

Browse sqlite3 gem documentation and Datamapper gem documenta-
tion

Experiment with sqlite3 and Ruby.

Week 13 PHP

Read all of “PHP Basic” and “PHP Database” from W3 Schools tutorials,
and browse the remainder.

Experiment with PHP and a MySQL database in the development
environment.

Week 14 Anatomy of an Omeka plugin

Read “Plugin Basics,” “Essential Classes in Omeka,” and browse the
Omeka documentation.

http://jasonheppler.org/2012/10/12/better-web-scraping-with-nokogiri.html
http://programminghistorian.org/lessons/intro-to-beautiful-soup
http://programminghistorian.org/lessons/downloading-multiple-records-using-query-strings
http://programminghistorian.org/lessons/downloading-multiple-records-using-query-strings
http://programminghistorian.org/lessons/automated-downloading-with-wget
http://programminghistorian.org/lessons/applied-archival-downloading-with-wget
http://nokogiri.org/
http://www.ruby-doc.org/
https://github.com/iron-io/rest
http://sinatra-book.gittr.com/
http://www.sinatrarb.com/
http://net.tutsplus.com/sessions/singing-with-sinatra/
http://rubydoc.info/gems/sqlite3/1.3.8/frames
http://datamapper.org/
http://datamapper.org/
http://www.w3schools.com/php/
https://omeka.readthedocs.org/en/latest/


4

Experiment with installing Omeka and the plugin of your choice, then
make an attempt at understanding what the plugin does.

Week 15 Your first Omeka plugin

Come to class with as much of your Omeka plugin (or other project)
working as possible. Be prepared to explain both your code and the
scholarly rationale behind your plugin in our class workshop.

Last day of instruction

Due: Tutorial

Due: Omeka plugin



Policies

Assignments

I may change due dates or assignments. I will always give you plenty of
notice of changes, which will always be intended for your benefit.

Students must satisfactorily complete all assignments (including partici-
pation assignments) in order to pass this course.

Boilerplate TBD

Acknowledgments

The following comic strips are used by permission:

• “Regular Expressions,” XKCD 208.
• Jorge Cham, PHD Comics, April 28, 2000.
• Jorge Cham, PHD Comics, November 30, 2007.
• Scott Adams, Dilbert, June 24, 1995.

I am grateful to Stephen Ramsay for sharing his syllabus for “CS1 Hu-
manities” with me.

License

This syllabus and all assignments are copyrighted © 2014 Lincoln Mullen
and licensed CC-BY 4.0. You are free to use or modify this syllabus for any
purpose, provided that you attribute it to the author, preferably at the course
website listed above.

1

http://xkcd.com/208/
http://www.phdcomics.com/comics/archive.php?comicid=180
http://www.phdcomics.com/comics/archive.php?comicid=946
http://dilbert.com/strips/comic/1995-06-24/
http://creativecommons.org/licenses/by/3.0/us/

